

Benefits and Challenges in AI for Primary Care:

Real World Impact & Ongoing Monitoring

Jaky Kueper, PhD Scripps Research Digital Trials Center

NAPCRG

A *brief* history of milestones in AI methods

Today: AI methods can now address meaningful primary care challenges

Real world impact starts with a clearly defined goal / problem to solve, while not limiting the vision of what's possible based on past approaches.

Benefit: Progressing beyond technical milestones to real world impact

Example: Al Scribes

Technical / Immediate Al Output

Example: Accuracy and appropriateness of notes

Example: Engagement with AI scribe, time spent on EMR activities

Downstream "Challenging" Outcomes

Example: Care quality, provider job satisfaction and retention

Benefit: Progressing beyond technical milestones to real world impact

Example: Asthma exacerbation (AE) prevention

Seol HY, Shrestha P, Muth JF, et al. Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. *PLoS One*. 2021;16(8):e0255261.

Downstream "Challenging" Outcomes

Example: One year occurrence of AE

Many Outcomes to Consider

- Patient outcomes
- Provider outcomes
- System-level outcomes
- Care team communication and effectiveness
- Cost-effectiveness
- Safety, security
- Environmental considerations
- Health equity and fairness
 - Do all subpopulations experience similar outcomes
 - Who/where does or does not have access to highquality, safe AI tools?

Note even a "perfectly" performing AI tool from a technical lens may not have real world impact

• Need more high-quality primary care prospective evaluation studies!

Challenge: AI performance changes across location, time, populations

Downstream "Challenging" Outcomes

Challenge: Methodological advancements and the availability of (not necessarily high quality) AI tools have outpaced evaluation & monitoring strategies

Methodological advancements & *expected* real world impacts

Rigorous, well-accepted evaluation strategies for single-task "classic" ML tools

Evaluation strategies for multi-purpose generative and agentic AI solutions

Ongoing monitoring and model maintenance over time

Challenge: Beyond single tool/task evaluation & monitoring strategies

Ongoing monitoring and maintenance

Population and System-Level Improvement

Lots of excitement. Several challenges. Largescale success TBD.

CellPress

Cell Metabc

Review

Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management

Evan D. Muse^{1,2} and Eric J. Topol^{1,2,1} ¹Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA ²Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA 92037, USA

Towards Generalist Biomedical AI

Tao Tu^{*, ‡, 1}, Shekoofeh Azizi^{*, ‡, 2},

Danny Driess², Mike Schaekermann¹, Mohamed Amin¹, Pi-Chuan Chang¹, Andrew Carroll¹, Chuck Lau¹, Ryutaro Tanno², Ira Ktena², Basil Mustafa², Aakanksha Chowdhery², Yun Liu¹ Simon Kornblith², David Fleet², Philip Mansfield¹, Sushant Prakash¹, Renee Wong¹, Sunny Virmani¹ Christopher Semturs¹, S Sara Mahdavi², Bradley Green¹, Ewa Dominowska¹, Blaise Aguera y Arcas¹, Joelle Barral², Dale Webster¹, Greg S. Corrado¹, Yossi Matias¹, Karan Singhal¹, Pete Florence², Alan Karthikesalingam^{\dagger , \ddagger ,1} and Vivek Natarajan^{\dagger , \ddagger ,1}

¹Google Research, ²Google DeepMind

PERSPECTIVE Ten Ways Artificial Intelligence Will Transform Primary Care

JGIM

Steven Y. Lin, MD¹, Megan R. Mahoney, MD¹, and Christine A. Sinsky, MD²

Division of Primary Care and Population Health, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; ², American Nedical Association, Chicago, IL, USA

NEJM AI 2025;2(2) DOI: 10.1056/Alra2400657

REVIEW ARTICLE

Not All Clinical AI Monitoring Systems Are Created **Equal: Review and Recommendations**

Jean Feng 💿, Ph.D., 1 Fan Xia 💿, Ph.D., 1 Karandeep Singh 💿, M.D., 2 and Romain Pirracchio 💿, Ph.D., M.D.

27 2024 Device de October 20, 2024 Acceste de Neversher 21, 2024 Devicie de Lev

NEJM Α

who

PERSPECTIVE

Deve

Evolution of Future Medical AI Models – From Task-Specific, Disease-Centric to Universal Health

Weizhi Ma 📵, Ph.D.,¹ Bin Sheng 💿, Ph.D.,^{2,3} Yang Liu 📵, Ph.D.,^{1,4} Jing Qian 💿, Psy.D.,⁵ Xiaoxuan Liu 💿, Ph.D.,⁶ Jingshan Li 🝺, Ph.D.,⁷ David Ouyang 🐌, M.D.,⁸ Haibo Wang 🐌, M.B., B.S., M.P.H.,⁹ Atanas G. Atanasov 🝺, Ph.D.,^{10,11} Pearse A. Keane (b, M.D.,^{12,13} Wei-Ying Ma (b, Ph.D.,¹ Yih-Chung Tham (b, Ph.D.,^{14,15,16,17} and Tien Yin Wong (b, M.D., Ph.D.^{14,1}

Received: March 17, 2024; Revised: May 4, 2024; Accepted: May 16, 2024; Published: July 12, 2024

Ethics and governance of artificial intelligence for health: Large multi-modal models

isks to be addressed		What can be done, and b							
Developm	ient phase	Developer actions	Gov						
	Д	O Certification/training for programmers	O Have and e						
* *	Ō	O Data protection impact assessments	O Issue targe						
Bias	Privacy	O Training data collected with 'best-practice' data protection rules	O Mandate of ability, corr						
*	오	 Training data are refreshed, up-to-date, and context-appropriate 	O Introduce p identify an						
Labor concerns	Carbon and water footprints	-	O Conduct a						
-2	***	C Ensure transparency of training data Fair wages and support to data workers	O Require de footprints						
-x			- Doquiro do						

in Virtual Primary Care

Why Is Primary Care Different? Considerations for **Machine Learning Development with Electronic Medical Record Data**

Jacqueline K. Kueper ^(D), Ph.D.,¹ Winston Liaw ^(D), M.D., M.P.H.,² Daniel J. Lizotte ^(D), Ph.D.,^{3,4} and Sian Hsiang-Te Tsuei 🔍, M.D., Ph.D., C.C.F.P.⁵

Foundation models for generalist medical artificial intelligence

udits during early AI development

evelopers to address carbon and wat

Summary

Challenge: Evaluation and monitoring strategies to inform AI tool selection and maintenance over time

research teams have a lot to offer in this space!

AI in Primary Care

Teaching and Learning Karim Hanna, MD, FAAFP, FAMIA

We Are Teachers.

- Benefit: Personalized, On-Demand
 Learning
- Challenge: The Risk of Misinformation and Overreliance

Board Prep

2024, Volume 56, Issue 9, 555-560, e-ISSN 1938-3800

ORIGINAL ARTICLE

Performance of Language Models on the Family Medicine In-Training Exam

Rana E. Hanna, BS^a; Logan R. Smith, BA^a; Rahul Mhaskar, PhD^b; Karim Hanna, MD^{a,c}

Results: ChatGPT 4.0 scored 167/193 (86.5%) with a scaled score of 730 out of 800. According to the Bayesian score predictor, ChatGPT 4.0 has a 100% chance of passing the family medicine board exam. ChatGPT 3.5 scored 66.3%, translating to a scaled score of 400 and an 88% chance of passing the family medicine board exam. Bard scored 64.2%, with a scaled score of 380 and an 85% chance of passing the boards. Compared to the national average of postgraduate year 3 residents, only ChatGPT 4.0 surpassed the residents' mean of 68.4%.

were created, incorporating demographics, symptoms, and lab data. Five LLMs—GPT-4, GPT-3.5, Llama-2-70b, Claude-2, and Mixtral-8x7B—were tested to generate Top 10, Top 5, and Top 1 DDx with and without lab data. Results show that incorporating lab data enhances accuracy by up to 30% across models. GPT-4 achieved the highest performance, with Top 1 accuracy of 55% (0.41–0.69) and lenient accuracy reaching 79% (0.68–0.90). Statistically significant

Patient Learning

Table 2. Understandability and Actionability of Different LLM Responses Based on PEMAT-Q Rubric

		ChatGPT		Google Bard		Hugging Chat		Claude 2	
PRIMER peer-reviewed reports in medical education research		Understandability	Actionability	Understandability	Actionability	Understandability	Actionability	Understandability	Actionability
LEARNER RESEARCH	Hypertension	67%	40%	33%	40%	67%	40%	67%	20%
Artificial Intelligence-Prom	Hyperlipidemia	67%	40%	56%	20%	67%	60%	67%	60%
Ŭ	Type 2 diabetes	67%	40%	44%	20%	56%	20%	67%	20%
Mafaz Kattih Max Bressler Logan R. Smith Ani	Hypothyroidism	67%	40%	44%	20%	56%	20%	78%	60%
PRIMER. 2024;8:51.	GERD	67%	20%	44%	20%	56%	20%	67%	40%
Published: 9/17/2024 DOI: 10.22454/PRiMER.2024.91608	Atherosclerosis	67%	20%	67%	20%	56%	20%	56%	20%
	Vaccination	78%	20%	78%	20%	44%	20%	78%	20%
	Average	69%	31%	52%	23%	57%	29%	69%	34%
	Standard deviation	4%	11%	16%	8%	8%	16%	8%	19%

Abbreviations: PEMAT-Q, Patient Education Materials Assessment Tool Question; GERD, gastrointestinal reflux disease.

Thank You!

MedEd+AI

Al in Primary Care: Good governance is a challenge

Balancing innovation with governance in clinical settings

Karim Keshavjee MSc, MD, MBAAssistant Professor & Program DirectorMaster of Health InformaticsDalla Lana School of Public HealthUniversity of Toronto, Canada

NAPCRG

Made with **GAMMA**

The Governance Gap

Small practices lack hospital resources

No legal counsel, privacy officers, or data committees

Clinicians as gatekeepers

Responsible without proper tools or authority

Equity concerns

Rural and under-resourced areas face heightened risks

Key Challenge: Risk Without Support

Clinicians remain legally responsible for AI they cannot properly evaluate

Al reaches clinics through informal channels

Oversight is patchy, risk unmanaged

Proposed Solution: Two-Layer Governance

National AI Committee

 \bigcirc

Certifies tools, sets guidelines, maintains registry

Local AI Governance Boards

Reviews implementation, assesses workflow fit, identifies local risks

Made with **GAMMA**

Made with **GAMMA**

Key Benefit: Enhanced Patient Care

Sharper Diagnosis

Al improves diagnostic accuracy

Reduced Paperwork

Automated documentation saves time

Tailored Treatment

Personalized care recommendations

The Path Forward

Sustainable Implementation

- Risk-matched governance
- Vendor-paid certification fees
- Standardized education

