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A *brief* history of milestones in Al methods
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Today: Al methods can now address meaningful primary care challenges

Other types of solutions
and approaches

7

NPy

=:NAPCRG




Benefit: Progressing beyond technical milestones to real world impact

Example: Al Scribes

Downstream
“Challenging” Outcomes

Technical / Immediate Al Direct Impact / Clinical
Action

Example: Accuracy and Example: Egagement Example: Care quality,
appropriateness of notes with Al scribe, time spent provider job satisfaction
on EMR activities and retention
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Benefit: Progressing beyond technical milestones to real world impact

Example: Asthma exacerbation (AE) prevention

Technical / Immediate Al
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Example: Accuracy of
high-risk AE predictions
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Example: Physician burden
and time for clinical decision
with asthma patient

Downstream
“Challenging” Outcomes

Example: One year
occurrence of AE



Many Outcomes to Consider

Patient outcomes

Provider outcomes

System-level outcomes

Care team communication and effectiveness
Cost-effectiveness

Safety, security

Environmental considerations

Health equity and fairness
— Do all subpopulations experience similar outcomes

— Who/where does or does not have access to high-
quality, safe Al tools?

Note even a “perfectly” performing Al tool from a
technical lens may not have real world impact

* Need more high-quality primary care
prospective evaluation studies!




Challenge: Al performance changes across location, time, populations

Need post-deployment ongoing monitoring of performance and impact

Technical / Immediate Al Direct Impact / Clinical Downstream
Action “Challenging” Outcomes




Challenge: Methodological advancements and the availability of (not necessarily
high quality) Al tools have outpaced evaluation & monitoring strategies

Methodological advancements & *expected* real world impacts

Rigorous, well-accepted evaluation strategies for single-task “classic” ML tools

Evaluation strategies for multi-purpose generative and agentic Al solutions

Ongoing monitoring and model maintenance over time
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Challenge: Beyond single tool/task evaluation & monitoring strategies
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Ongoing monitoring and maintenance
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Lots of excitement.
Several challenges.
Largescale success TBD.
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Transforming the cardiometabolic disease
landscape: Multimodal Al-powered approaches
in prevention and management

Evan D. Muse'~ and Eric J. Topol®~#*
1Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA
“Division of Cardiovascular Diseases. Scripps Clinie, La Jolla, CA 92037, USA

Towards Generalist Biomedical Al
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PERSPECTIVE 1)
Ten Ways Afificial Intelligence Will Transform Primary Care

Check for
Steven Y. Lin, MD', Megan R. Mahoney, MD', and Christine A. Sinsky, MD? updates

'Division of Primary Care and Population Health, Deparfment of Medicine, Stanford University School of Medicine, Stanford, CA, USA; 2 American
Medical Association, Chicage, IL, USA.
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AI DOI:10.1056/Alra2400657
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Not All Clinical AI Monitoring Systems Are Created

Equal: Review and Recommendations

Jean Feng ©, Ph.D.,” Fan Xia ©, Ph.D.," Karandeep Singh ©, M.D.,* and Romain Pirracchio ©, Ph.D., M.D.
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Why Is Primary Care Different? Considerations for
Machine Learning Development with Electronic
Medical Record Data
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Foundation models for generalist medical
artificial intelligence
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Ethics and governance of artificial intelligence for health:
Large multi-modal models

Risks to be addressed What can be done, and by who

Development phase Developer actions Government actions
- I ~ @ O Certification/training for programmers O Have and enforce strong data protection laws
- -
(O Data protection impact assessments O Issue target product profiles
Bias Privacy
' o _ , . Mandate outcomes (predictability, interpret-
O Ilalnlngddlawllcr_tud with 'best-practice’ data O ability, corrigibility, safety, eybersecurity)
protection rules
O ntroduce pre-certification programmes to
% ®) Training data are refreshed, up-to-date, and identify and avoid ethical risks
T YT context-appropriate
cOncerns water footprints o O Conduct audits during early Al development
Ensure transparency of training data
= 9] Require developers to address carbon and water
-V * % ¥ O Fair wages and support to data workers L2l
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@
Q&A exchanges
Clinical Knowledge Multimodal inputs
notes graphs and outputs
Reasoning with multiple Dynamic task specification

GMAI knowledge sources

Chatbots for Interactive Augmented Grounded Text-to-protein Bedside decision
patients note-taking procedures radiology reports generation support

Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

Fig.1|Overview of aGMAImodel pipeline. a, AGMAI model istrainedon outtasks that the user can specifyinreal time. For this, the GMAl model can
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Summary

Al Primary Care
Functionality Challenges
TODAY

RN

Benefit: Al systems can now perform
meaningful tasks for primary care

\U

Challenge: Evaluation and monitoring strategies to
inform Al tool selection and maintenance over time

\

)

Longterm
Positive
Impact

Opportunity: Interdisciplinary primary care
research teams have a lot to offer in this space!

Contact:
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We Are Teachers.

o Benefit: Personalized, On-Demand

Learning
o Challenge: The Risk of Misinformation and

Overreliance




Board Prep

2024, Volume 56, Issue 9, 555-560, e-ISSN 1938-3800
ORIGINAL ARTICLE
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Performance of Language Models on the Family Medicine In-Training Exam

Rana E. Hanna, BS?; Logan R. Smith, BA?; Rahul Mhaskar, PhD"; Karim Hanna, MD#¢

Results: ChatGPT 4.0 scored 167/193 (86.5%) with a scaled score of 730 out of 800.
According to the Bayesian score predictor, ChatGPT 4.0 has a100% chance of passing
the family medicine board exam. ChatGPT 3.5 scored 66.3%, translating to a scaled
score of 400 and an 88% chance of passing the family medicine board exam. Bard
scored 64.2%, with a scaled score of 380 and an 85% chance of passing the boards.
Compared to the national average of postgraduate year 3 residents, only ChatGPT
4.0 surpassed the residents’ mean of 68.4%.
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npj | digital medicine

Explore content v About the journal v Publish with us v

nature > npjdigital medicine > articles > article

Article | Open access | Published: 18 March 2025

Preliminary analysis of the impact of lab results on
large language model generated differential diagnoses

Balu Bhasuran, Qiao Jin, Yuzhang Xie, Carl Yang, Karim Hanna, Jennifer Costa, Cindy Shavor, Wenshan Han,
8

Zhivong Lu & Zhe He

opi Digital Medicine 8, Article number: 166 (2025) | Cite this article

were created, incorporating demographics, symptoms, and lab data. Five LI Ms—GPT-4, GP1-
3.5, Llama-2-70b, Claude-2, and Mixtral-8x7B—were tesled to generate Top 10, Top 5, and Top
1 DDx with and without lab data. Results show that incorporating lab data enhances accuracy
by up to 30% across models. GPT-4 achieved the highest performance, with Top 1 accuracy of
55% (0.41-0.69) and lenient accuracy reaching 79% (0.68-0.90). Statistically significant
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Patient Learning

Table 2. Understandability and Actionability of Different LLM Responses Based on PEMAT-Q Rubric

ChatGPT Hugging Chat Claude 2
£ £ £ £
S 2 ¥ 2 5 2 ¥ 2
n (1] — 1] — (1] = (C —
© o] © Q2 © o] © o]
PRIMER " :E 3 E 3 £ 3 & 3
g © g © g © o ©
S < = < = < S <
-} = > =
LEARNER RESEARCH
Hypertension 67% 40% 33% 40% 67% 40% 67% 20%
Art|f| Cla | | Nnte | | | ge nce- P FOIT| Hyperlipidemia 67% 40% 56% 20% 67% 60% 67% 60%
Type 2 diabetes 67% 40% 44% 20% 56% 20% 67% 20%
Mafaz Kattih | Max Bressler | Logan R. Smith | An{™ oty roidism 67% 40% 44% 20% 56% 20% 78% 60%
PRIMER. 2024;8:51. GERD 67% 20% 44% 20% 56% 20% 67% 40%
Published: 9/17/2024 | DOI: 10.22454/PRIMER.2024.9160¢ 5o~~~ 67% 20% 67% 20% 56% 20% 56% 0%
Vaccination 78% 20% 78% 20% 44% 20% 78% 20%
Average 69% 31% 52% 23% 57% 29% 69% 34%
Standard deviation 4% 1% 16% 8% 8% 16% 8% 19%
7 Abbreviations: PEMAT-Q, Patient Education Materials Assessment Tool Question; GERD, gastrointestinal reflux disease.

:NAPCRG




Thank You

MedEd+Al




Al in Primary Care: Good
governance is a challenge

Balancing innovation with governance in clinical settings

Karim Keshavjee MSc, MD, MBAAssistant Professor & Program
DirectorMaster of Health InformaticsDalla Lana School of Public
HealthUniversity of Toronto, Canada
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Al Scribe Data Flow

Conversation DISpIay in EMR
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The Governance Gap

Small practices lack Clinicians as gatekeepers Equity concerns
hospital resources

P Responsible without proper tools or Rural and under-resourced areas
No legal counsel, privacy officers, authority face heightened risks

or data committees
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Key Challenge: Risk Without Support

Clinicians remain legally responsible for Al they cannot properly

evaluate
Al reaches clinics through informal channels

Oversight is patchy, risk unmanaged
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Proposed Solution: Two-Layer
==, Governance

\ @ﬁ;‘"——fv——” wt" o National Al Committee

_ / Certifies tools, sets guidelines, maintains registry
,‘__—— %__""":_{,-A
! —
s R Local Al Governance Boards
L $’ O — . -
- o Reviews implementation, assesses workflow fit, identifies local

risks
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Trustworthiness

Implementation
Options

Evaluation Criteria

Trade-offs

Approve

Monitoring
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Key Benefit: Enhanced
Patient Care

H Sharper Diagnosis

Al improves diagnostic accuracy

Reduced Paperwork

Automated documentation saves time

s+~ Tailored Treatment

Personalized care recommendations
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The Path Forward

Sustainable Implementation

Risk-matched governance
Vendor-paid certification fees

Standardized education
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