Using electronic health record data for population health and practice based research

2014 North American Primary Care Research Group Practice Based Research Network Conference

Adam Baus, MA, MPH | PhD Candidate, Public Health Sciences
West Virginia Clinical and Translational Science Institute
West Virginia University School of Public Health
EHR as a Backbone to Analytics

As the adoption rate of electronic health records (EHRs) in primary care increases, so too does the potential for EHRs to be viable tools for quality improvement and research.

- Broadly defined, EHRs store clinical information for use in patient care and are intended to:
  - allow efficient, secure, accurate data sharing
  - offer decision support for patient care
  - improve management of medical information
  - reduce health disparities among safety-net clinics
  - improve patient care at reduced cost
  - act as valuable tools for quality improvement, practice redesign, research, and analytics
Key objective of health analytics

- To gain insight for making informed healthcare decisions
  - Improve the quality of patient care
  - Reduce healthcare costs
  - Improve the health of the patient population

Raghupathi, 2013
PERSPECTIVE

● Health analytics is generally equated with specialized software, run only by those with specialized skillsets
  ■ Often referred to when talking about “big data” and “data warehouses”

● While important, the focus on software can overshadow other essential considerations
  ■ Knowledge, skill, and ability to work with data (transcends specific EHRs)
    ○ Applying data on a local level (state → region → clinic → provider)
  ■ “Data maturity” (Turning data into information, and information into action)
CONFUSION VERSUS INFORMATION

We need just the right balance

- As information increases, confusion decreases – but only to a point

Figure 1. Confusion versus Information

Health Systems Must Strive for Data Maturity

Rocco J. Perla, EdD
5 concepts in being “data mature” (Perla, 2012)

1. Data are seen as an investment and resource
   - Good reports take time and care
2. Projects have lifecycles
   - Old measures evolve or are replaced
3. All measures are operationally defined
   - Clear, understood definitions
   - Knowing from where the data come
4. Improvement metrics are linked to attempts at change
   - Acting on data -- Improvement depends on measurement
5. Data are visualized
   - Graphical representations
   - Maps
**WV Practice Based Research Network**

- **Mission** -- To improve the health of West Virginians by collaborating with primary care practices to conduct translational practice based research
Identifying Patients with Hypertension: A Case for Auditing Electronic Health Record Data

by Adam Baus, MA, MPH; Michael Hendryx, PhD; and Cecil Pollard, MA

Abstract

Problems in the structure, consistency, and completeness of electronic health record data are barriers to outcomes research, quality improvement, and practice redesign. This nonexperimental retrospective study examines the utility of importing de-identified electronic health record data into an external system to identify patients with and at risk for essential hypertension.

We find a statistically significant increase in cases based on combined use of diagnostic and free-text coding (mean = 1,256.1, 95% CI 1,232.3–1,279.7) compared to diagnostic coding alone (mean = 1,174.5, 95% CI 1,150.5–1,198.3). While it is not surprising that significantly more patients are identified
# Research Supporting Population Health

Increase in Count of Patients with Essential Hypertension, by Search Criteria and Primary Care Center

<table>
<thead>
<tr>
<th>Primary Care Center</th>
<th>A: Patients with Hypertension: ICD-9-CM Coding</th>
<th>B: Patients with Hypertension: ICD-9-CM Coding Plus Free Text</th>
<th>C: Patients with Hypertension: ICD-9-CM Coding Plus Free Text Plus Last 2+ Blood Pressure Readings $\geq 140/90$ mm Hg</th>
<th>Percent Missed Based on ICD-9-CM Coding Only ($100% - A/C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,124</td>
<td>5,270</td>
<td>5,535</td>
<td>7.4%</td>
</tr>
<tr>
<td>B</td>
<td>1,605</td>
<td>1,868</td>
<td>1,945</td>
<td>17.5%</td>
</tr>
<tr>
<td>C</td>
<td>476</td>
<td>505</td>
<td>596</td>
<td>20.1%</td>
</tr>
<tr>
<td>D</td>
<td>658</td>
<td>660</td>
<td>724</td>
<td>9.1%</td>
</tr>
<tr>
<td>E</td>
<td>852</td>
<td>859</td>
<td>884</td>
<td>3.6%</td>
</tr>
<tr>
<td>F</td>
<td>313</td>
<td>313</td>
<td>325</td>
<td>3.7%</td>
</tr>
<tr>
<td>G</td>
<td>228</td>
<td>418</td>
<td>438</td>
<td>47.9%</td>
</tr>
<tr>
<td>H</td>
<td>396</td>
<td>407</td>
<td>446</td>
<td>11.2%</td>
</tr>
<tr>
<td>I</td>
<td>666</td>
<td>714</td>
<td>749</td>
<td>11.1%</td>
</tr>
<tr>
<td>J</td>
<td>1,143</td>
<td>1,217</td>
<td>1,526</td>
<td>25.1%</td>
</tr>
<tr>
<td>K</td>
<td>1,458</td>
<td>1,586</td>
<td>1,725</td>
<td>15.5%</td>
</tr>
<tr>
<td>Sum</td>
<td>12,919</td>
<td>13,817</td>
<td>14,893</td>
<td>13.3%</td>
</tr>
<tr>
<td>Mean</td>
<td>1,174.45</td>
<td>1,256.09</td>
<td>1,353.91</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1,386.60</td>
<td>1,424.08</td>
<td>1,492.58</td>
<td></td>
</tr>
<tr>
<td>95% CI, Lower</td>
<td>1,150.49</td>
<td>1,232.26</td>
<td>1,329.93</td>
<td></td>
</tr>
<tr>
<td>95% CI, Upper</td>
<td>1,198.31</td>
<td>1,279.74</td>
<td>1,377.87</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Increase in Count of Patients with Hypertension, by Search Criteria

Note: Figure shows statistically significant increases in identification of essential hypertension cases using three search criteria methods.
Registry-based Diabetes Risk Detection Schema for the Systematic Identification of Patients at Risk for Diabetes in West Virginia Primary Care Centers

by Adam Baus, MA, MPH; Gina Wood, RD, LD; Cecil Pollard, MA; Belinda Summerfield, RN; and Emma White, RN

Abstract

Approximately 466,000 West Virginians, or about 25 percent of the state population, have prediabetes and are at high risk for developing type 2 diabetes. Appropriate lifestyle intervention can prevent or delay the onset of type 2 diabetes if individuals at risk are identified and treated early. The West Virginia Diabetes Prevention and Control Program and the West Virginia University Office of Health Services Research are developing a systematic approach to diabetes prevention within primary care. This study aims to demonstrate the viability of patient registry software for the analysis of disparate electronic health record (EHR) data sets and standardized identification of at-risk patients for early detection and intervention. Preliminary analysis revealed that of 94,283 patients without a documented diagnosis of diabetes in the EHR, 14,272 (15.2%) were identified as prediabetic using a validated algorithm.
Research Supporting Population Health

Across 14 WV primary care centers, we find:

- 130,021 active patients
- Among those, 106,367 (81.8%) are established (receiving care for 12 months or more)
- Among those, 94,283 (88.6%) do not have a diagnosis of diabetes or pre-diabetes
# Research Supporting Population Health

<table>
<thead>
<tr>
<th>Primary Care Center</th>
<th>Patients w/out Dx of DM or pre-DM</th>
<th>Patients age &gt;45 with last BMI &gt;25</th>
<th>Patients age &lt;45 w/ BMI &gt;25 w/ HTN, hyperlipidemia, gestational DM, family hx of DM, CVD</th>
<th>Patients with last FBG 100-125</th>
<th># and % of patients identified as at-risk for pre-DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1546</td>
<td>112</td>
<td>18</td>
<td>1</td>
<td>131 (8.5%)</td>
</tr>
<tr>
<td>B</td>
<td>1682</td>
<td>334</td>
<td>40</td>
<td>4</td>
<td>378 (22.5%)</td>
</tr>
<tr>
<td>C</td>
<td>2068</td>
<td>308</td>
<td>49</td>
<td>1</td>
<td>358 (17.3%)</td>
</tr>
<tr>
<td>D</td>
<td>1050</td>
<td>54</td>
<td>7</td>
<td>70</td>
<td>131 (12.5%)</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>18 (1.6%)</td>
</tr>
<tr>
<td>F</td>
<td>1849</td>
<td>62</td>
<td>15</td>
<td>2</td>
<td>79 (4.3%)</td>
</tr>
<tr>
<td>G</td>
<td>2068</td>
<td>284</td>
<td>35</td>
<td>11</td>
<td>330 (16.0%)</td>
</tr>
<tr>
<td>H</td>
<td>5517</td>
<td>235</td>
<td>26</td>
<td>21</td>
<td>282 (5.1%)</td>
</tr>
<tr>
<td>I</td>
<td>8407</td>
<td>669</td>
<td>70</td>
<td>0</td>
<td>739 (8.8%)</td>
</tr>
<tr>
<td>J</td>
<td>17792</td>
<td>2467</td>
<td>288</td>
<td>1627</td>
<td>4382 (24.6%)</td>
</tr>
<tr>
<td>K</td>
<td>10026</td>
<td>557</td>
<td>52</td>
<td>504</td>
<td>1113 (11.1%)</td>
</tr>
<tr>
<td>L</td>
<td>9185</td>
<td>627</td>
<td>91</td>
<td>3</td>
<td>721 (7.8%)</td>
</tr>
<tr>
<td>M</td>
<td>19038</td>
<td>1054</td>
<td>90</td>
<td>2</td>
<td>1146 (6.0%)</td>
</tr>
<tr>
<td>N</td>
<td>12945</td>
<td>794</td>
<td>69</td>
<td>2</td>
<td>865 (6.7%)</td>
</tr>
<tr>
<td>Sum</td>
<td>94283</td>
<td>7572</td>
<td>853</td>
<td>2248</td>
<td><strong>10673 (11.3%)</strong></td>
</tr>
<tr>
<td>Mean</td>
<td>6734.5</td>
<td>540.8</td>
<td>60.9</td>
<td>160.6</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>6307.2</td>
<td>635.2</td>
<td>71.4</td>
<td>442.5</td>
<td></td>
</tr>
</tbody>
</table>
“In the end, we need to keep data in its place and maximize its ability to serve us humans with all our limitations—not the reverse.”
SELECT READINGS ON THE BENEFITS AND CHALLENGES OF EHR DATA

- Goldschmidt, P. G. “HIT and MIS: Implications of Health Information Technology and Medical Information Systems.”
- Harris, K. D., J. T. Parsons, and R. Jimenez. “Developing a Methodology for the Customization of an Electronic Medical Record in a Rural Health Care Setting.”
THANK YOU & CONTACT INFORMATION

Adam Baus, MA, MPH, PhD Candidate
West Virginia University School of Public Health, Office of Health Services Research | West Virginia Clinical and Translational Sciences Institute
304-293-1083 | abaus@hsc.wvu.edu

Made possible by IDeA CTR support – NIH/NIGMS Award Number U54GM104942